
Longest Increasing Subsequence
2013 IOI Camp 1

Robert Spencer

December 11, 2013

Robert Spencer Longest Increasing Subsequence 1/8



Introduction

Given some sequence, what is the longest, increasing subsequence?

0 8 4 14 2 10 6 12 1 16

But how to do that?

Robert Spencer Longest Increasing Subsequence 2/8



Introduction

Given some sequence, what is the longest, increasing subsequence?

0 8 4 14 2 10 6 12 1 16

But how to do that?

Robert Spencer Longest Increasing Subsequence 2/8



Introduction

Given some sequence, what is the longest, increasing subsequence?

0 8 4 14 2 10 6 12 1 160 8 10 12 16

But how to do that?

Robert Spencer Longest Increasing Subsequence 2/8



First Attempt

How about trying all different subsequences?

Guarranteed to get correct solution. Yay!
But what is its efficiency?
O(2n)! Yikes!

Robert Spencer Longest Increasing Subsequence 3/8



First Attempt

How about trying all different subsequences?
Guarranteed to get correct solution. Yay!

But what is its efficiency?
O(2n)! Yikes!

Robert Spencer Longest Increasing Subsequence 3/8



First Attempt

How about trying all different subsequences?
Guarranteed to get correct solution. Yay!
But what is its efficiency?

O(2n)! Yikes!

Robert Spencer Longest Increasing Subsequence 3/8



First Attempt

How about trying all different subsequences?
Guarranteed to get correct solution. Yay!
But what is its efficiency?
O(2n)! Yikes!

Robert Spencer Longest Increasing Subsequence 3/8



Second Attempt

So how do we better this? From the constraints, we know that the
solution has to be fairly fast. Also, we can intuit that we can
“build” on smaller subproblems to get the solution to the big
problem.

Also, you have just had a lecture on DP.
What is the semi-obvious DP?
Store the length of the longest increasing subsequence ending on
that point. This can also be used to reconstruct the subsequence.

0

1

8

2

4

2

14

3

2

2

10

3

6

4

12

5

1

2

16

6

Robert Spencer Longest Increasing Subsequence 4/8



Second Attempt

So how do we better this? From the constraints, we know that the
solution has to be fairly fast. Also, we can intuit that we can
“build” on smaller subproblems to get the solution to the big
problem.
Also, you have just had a lecture on DP.

What is the semi-obvious DP?
Store the length of the longest increasing subsequence ending on
that point. This can also be used to reconstruct the subsequence.

0

1

8

2

4

2

14

3

2

2

10

3

6

4

12

5

1

2

16

6

Robert Spencer Longest Increasing Subsequence 4/8



Second Attempt

So how do we better this? From the constraints, we know that the
solution has to be fairly fast. Also, we can intuit that we can
“build” on smaller subproblems to get the solution to the big
problem.
Also, you have just had a lecture on DP.
What is the semi-obvious DP?

Store the length of the longest increasing subsequence ending on
that point. This can also be used to reconstruct the subsequence.

0

1

8

2

4

2

14

3

2

2

10

3

6

4

12

5

1

2

16

6

Robert Spencer Longest Increasing Subsequence 4/8



Second Attempt

So how do we better this? From the constraints, we know that the
solution has to be fairly fast. Also, we can intuit that we can
“build” on smaller subproblems to get the solution to the big
problem.
Also, you have just had a lecture on DP.
What is the semi-obvious DP?
Store the length of the longest increasing subsequence ending on
that point. This can also be used to reconstruct the subsequence.

0

1

8

2

4

2

14

3

2

2

10

3

6

4

12

5

1

2

16

6

Robert Spencer Longest Increasing Subsequence 4/8



Second Attempt

So how do we better this? From the constraints, we know that the
solution has to be fairly fast. Also, we can intuit that we can
“build” on smaller subproblems to get the solution to the big
problem.
Also, you have just had a lecture on DP.
What is the semi-obvious DP?
Store the length of the longest increasing subsequence ending on
that point. This can also be used to reconstruct the subsequence.

0

1

8

2

4

2

14

3

2

2

10

3

6

4

12

5

1

2

16

6

Robert Spencer Longest Increasing Subsequence 4/8



Doing the DP

How do we find dp[i] though?

for i from 1 to n do

best = 0

for j from 1 to i-1 do

if s[j] < s[i] and dp[j] > best then

best = dp[j]

dp[i] = best + 1

Efficiency O(n2) is
“somewhat better.”

2x

x2

Robert Spencer Longest Increasing Subsequence 5/8



Doing the DP

How do we find dp[i] though?

for i from 1 to n do

best = 0

for j from 1 to i-1 do

if s[j] < s[i] and dp[j] > best then

best = dp[j]

dp[i] = best + 1

Efficiency O(n2) is
“somewhat better.”

2x

x2

Robert Spencer Longest Increasing Subsequence 5/8



Doing the DP

How do we find dp[i] though?

for i from 1 to n do

best = 0

for j from 1 to i-1 do

if s[j] < s[i] and dp[j] > best then

best = dp[j]

dp[i] = best + 1

Efficiency O(n2) is
“somewhat better.”

2x

x2

Robert Spencer Longest Increasing Subsequence 5/8



Doing the DP

How do we find dp[i] though?

for i from 1 to n do

best = 0

for j from 1 to i-1 do

if s[j] < s[i] and dp[j] > best then

best = dp[j]

dp[i] = best + 1

Efficiency O(n2) is
“somewhat better.”

2x

x2

Robert Spencer Longest Increasing Subsequence 5/8



Improvements

We can do better though...

The inner loop is the problematic one. It adds a factor of n to our
O(n2).
We also don’t have a very easy way of finding the sequence (one
exists but it can be bettered)
A different DP is needed.

Robert Spencer Longest Increasing Subsequence 6/8



Improvements

We can do better though...
The inner loop is the problematic one. It adds a factor of n to our
O(n2).

We also don’t have a very easy way of finding the sequence (one
exists but it can be bettered)
A different DP is needed.

Robert Spencer Longest Increasing Subsequence 6/8



Improvements

We can do better though...
The inner loop is the problematic one. It adds a factor of n to our
O(n2).
We also don’t have a very easy way of finding the sequence (one
exists but it can be bettered)

A different DP is needed.

Robert Spencer Longest Increasing Subsequence 6/8



Improvements

We can do better though...
The inner loop is the problematic one. It adds a factor of n to our
O(n2).
We also don’t have a very easy way of finding the sequence (one
exists but it can be bettered)
A different DP is needed.

Robert Spencer Longest Increasing Subsequence 6/8



Third Attempt

If we have a choice amongst previous elements when building our
LIS, we might as well take the smallest. This leads to the DP:

Let m[j ] store the position k of the smallest s[k] such that
there is a increasing subsequence of length j ending on s[k].

Let p[i ] store the predecessor of s[i ] in the longest increasing
subsequence ending on s[i ].

It is important to note that s[m[1]], s[m[2]], . . . , s[m[L]] is
nondecreasing. This is true, as if there is a increasing subsequence
of length i ending at s[m[i ]], then there is also a increasing
subsequence of length i − 1 ending at a smaller value, i.e. the
all-but-one of that sequence.
Then we can build this up as follows:

Robert Spencer Longest Increasing Subsequence 7/8



Third Attempt

If we have a choice amongst previous elements when building our
LIS, we might as well take the smallest. This leads to the DP:

Let m[j ] store the position k of the smallest s[k] such that
there is a increasing subsequence of length j ending on s[k].

Let p[i ] store the predecessor of s[i ] in the longest increasing
subsequence ending on s[i ].

It is important to note that s[m[1]], s[m[2]], . . . , s[m[L]] is
nondecreasing. This is true, as if there is a increasing subsequence
of length i ending at s[m[i ]], then there is also a increasing
subsequence of length i − 1 ending at a smaller value, i.e. the
all-but-one of that sequence.

Then we can build this up as follows:

Robert Spencer Longest Increasing Subsequence 7/8



Third Attempt

If we have a choice amongst previous elements when building our
LIS, we might as well take the smallest. This leads to the DP:

Let m[j ] store the position k of the smallest s[k] such that
there is a increasing subsequence of length j ending on s[k].

Let p[i ] store the predecessor of s[i ] in the longest increasing
subsequence ending on s[i ].

It is important to note that s[m[1]], s[m[2]], . . . , s[m[L]] is
nondecreasing. This is true, as if there is a increasing subsequence
of length i ending at s[m[i ]], then there is also a increasing
subsequence of length i − 1 ending at a smaller value, i.e. the
all-but-one of that sequence.
Then we can build this up as follows:

Robert Spencer Longest Increasing Subsequence 7/8



Psudocode

L = 0

for i = 1 to n do

binary search for the largest positive j L

such that s[m[j]] < s[i] (or set j = 0 if no such value exists)

P[i] = m[j]

if j == L or s[i] < s[m[j+1]]:

m[j+1] = i

L = max(L, j+1)

This has O(n log n) which is good enough for most cases.

Robert Spencer Longest Increasing Subsequence 8/8



Psudocode

L = 0

for i = 1 to n do

binary search for the largest positive j L

such that s[m[j]] < s[i] (or set j = 0 if no such value exists)

P[i] = m[j]

if j == L or s[i] < s[m[j+1]]:

m[j+1] = i

L = max(L, j+1)

This has O(n log n) which is good enough for most cases.

Robert Spencer Longest Increasing Subsequence 8/8


